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A combined experimental and numerical investigation is presented of the multiple
oscillatory states that exist in the flows produced in a completely filled, enclosed,
circular cylinder driven by the constant rotation of one of its endwalls. The flow
in a cylinder of height to radius ratio 2.5 is interrogated experimentally using flow
visualization and digitized images to extract quantitative temporal information. Nu-
merical solutions of the axisymmetric Navier–Stokes equations are used to study the
same flow over a range of Reynolds numbers where the flow is observed to remain
axisymmetric. Three oscillatory states have been identified, two of them are periodic
and the third is quasi-periodic with a modulation frequency much smaller than the
base frequency. The range of Reynolds numbers for which the quasi-periodic flow
exists brackets the switch between the two periodic states. The results from the com-
bined experimental and numerical study agree both qualitatively and quantitatively,
providing unambiguous evidence of the existence and robustness of these multiple
time-dependent states.

1. Introduction
Rotating flows have been studied extensively for a variety of reasons. Their tech-

nological applications are many and varied (e.g. centrifugal pumps, turbo-machinery,
cyclone separators), and their importance to geophysical flows is manifested over a
large range of scales (e.g. tornadoes, hurricanes, ocean circulations). Confined rotating
flows have also attracted much interest as a test-bed for contemporary ideas on the
role played by finite-dimensional dynamical systems theory on the transition to tur-
bulence (e.g. Gollub & Swinney 1975; Christensen et al. 1993; Mullin 1993; Kobine
& Mullin 1994; Sorensen & Christensen 1995).

The study presented here is an experimental and computational investigation of the
flow in a filled, enclosed cylinder driven by the constant rotation of one of its endwalls.
When an endwall (the top endwall here) is impulsively started, a thin Ekman boundary
layer is formed that centrifuges fluid radially outwards while drawing fluid in from
the interior. The expelled fluid then spirals down the sidewall and is subsequently
deflected at the bottom stationary endwall, where it spirals inwards and turns to form
a columnar-like vortex centred on the axis. The parameters that determine the flow
are the Reynolds number and the aspect ratio of the cylinder. Here, the Reynolds
number is Re = ΩR2/ν, where Ω is the constant speed of rotation of the endwall,
R is the radius of the cylinder, and ν is the kinematic viscosity of the fluid. The
aspect ratio of the cylinder is H/R, where H is the height. The earliest published
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experimental results on this flow, exhibiting a region of recirculation on the axis,
are by Vogel (1968). Such recirculation zones are usually visualized by releasing dye
from the centre of the stationary endwall. The dye is advected along the vortex core
and spreads out around the recirculation zone. Escudier (1984) extended the results
of Vogel, mapping out the steady and unsteady flow regions in (Re,H/R) space.
There have been numerous computational studies of this flow (e.g. Lugt & Abboud
1987; Neitzel 1988; Lopez 1989; Sorensen & Daube 1989; Lopez 1990; Daube 1991;
Tsitverblit 1993; Sorensen & Christensen 1995; Gelfgat, Bar-Yoseph & Solan 1996),
where various aspects of the unsteady motions which exist in different regions of
parameter space have been considered.

A numerical study of the periodic flow for H/R = 2.5 was conducted by Lopez
& Perry (1992) who report the existence of distinct modes of oscillation. One mode
consisted of two regions enclosed by the separatrices of the instantaneous streamline
pattern periodically coalescing and separating. The other mode consisted of a wave
travelling axially from the stationary endwall to the rotating endwall. The modes were
also distinguished by the non-dimensional periods of oscillation, τ = ΩT , where T is
the time in seconds required for one complete cycle. Lopez & Perry found τ ≈ 36 for
2650 < Re < 3500, τ ≈ 36 and τ ≈ 28 for 3500 < Re < 3600, and a pure period of
τ ≈ 28 for flows impulsively started with 3600 < Re < 4000.

Previous experimental results for this flow in the unsteady regime include Wester-
gaard, Buchhave & Sorensen (1993), who obtained particle-image-velocimetry (PIV)
and hot-film results for Re ranging from 3000 to 8000 and H/R = 2. For the periodic
flow at Re = 3000, they found the period of the flow to be τ ≈ 26 (Ω = 4.4 rad s−1,
T = 5.9 s). At Re= 5000, Westergaard et al. reported results that imply τ ≈ 23 (Ω= 7.8
rad s−1, T = 2.9 s). In their experiments, substantial departures from axisymmetric
flow are apparent at Re as low as 3000. The axisymmetric computations of Lopez
(1989) for H/R = 2 and Re = 3000 have τ ≈ 27, in agreement with the Westergaard
et al. experiment. Escudier (1984) reports that the flow remains axisymmetric well into
the oscillatory regime, but does not report the oscillation periods for his experiments.

A numerical study of the periodic flow for H/R = 2.0 was conducted by Sorensen
& Christensen (1995). They observed several regions of hysteresis between periodic
flows. Their computed period of oscillation for Re ≈ 3000 also agrees with the
experimental results of Westergaard et al. (1993). However, the experiments of West-
ergaard et al. were not sufficiently detailed, nor do they appear to have low enough
three-dimensional perturbation levels, to detect the multiple oscillatory states and the
associated hysteretic jumps reported by Sorensen & Christensen from their axisym-
metric computations. Westergaard et al. used a motorized Hasselblad camera with a
rate of 1.25 frames per second for PIV measurements. That frame rate is too slow for
the fine temporal structures predicted by the numerical computations and revealed in
the present experiment.

Recently, Gelfgat et al. (1996) looked at the unsteady flow in the neighbourhood of
where it first appears using linear stability theory and weakly nonlinear computations.
They found that their weakly nonlinear computations agreed very well with the fully
nonlinear computations of Lopez & Perry (1992). Here, we extend the investigation
into the unsteady flow regime far from the onset of unsteadiness. We present a com-
bined experimental and numerical systematic investigation of this flow in parameter
regimes where limit cycle flows and flows on two-tori exist.

In this paper, we study in detail the multiple periodic states that exist for H/R = 2.5
over a range of Re where the flow remains axisymmetric. We find, both experimentally
and numerically, that three distinct oscillatory states exist in this region. Two of them
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Figure 1. Schematic of the experimental apparatus.

are periodic, with fundamental periods denoted τ1 and τ2. The third state is quasi-
periodic, with a base period denoted τ3 and modulated by a very low-frequency
oscillation. This low-frequency mode is readily detected in the numerics, but due to
the relatively shorter data sample length from the experiment, it is not resolved directly
from the PSD, other than as side-bands on the fundamental mode. However, plots of
time-histories from the experiment clearly show the modulations at frequencies that
agree with the numerics. In both the numerics and the experiments, hysteretic jumps
between the various oscillatory states are observed and described.

2. Experimental set-up
A schematic of the experimental apparatus is presented in figure 1. The cylinder

and both endwalls are made of Plexiglas. The cylinder radius is 9.563 ± 0.005 cm,
and the cylinder height can be varied from 14.29 cm to 28.58 cm, giving a range
in H/R of 1.5 to 3.0. The rotating endwall is parallel to the stationary endwall to
within 0.03 ◦ and has a maximum excursion of ±0.0013 cm at the edge of the disk.
The disk is aligned with the axis of the cylinder to within 0.008 cm with a nominal
gap between the disk and the cylinder of 0.168 cm. Geometric imperfections, which
are always present in an experiment, may take many forms including misalignment
of the endwalls, non-circularity of the cylinder and wobble of the rotating endwall.
Although the effects of imperfect geometry are applied at the disk frequency, they are
most apparent at the 0.028 non-dimensional frequency of the bifurcating unsteady
flow. Any wobbling of the disk and/or fluctuations in the disk speed constitute a
low-level periodic forcing.

The disk is driven by a PMI Motion Technologies JR16M4CH-1/F9T/ENC servo-
motor. A phase-locked loop (PLL) circuit is used to synchronize the motor shaft
encoder (1000 pulses/rev) with a clock signal from an HP model 3312A function
generator. Due to small, angle-dependent frictional torques present at low Ω, the
motor exhibited slight phase variations leading to speed fluctuations on the order of
0.003 Hz. These disturbances were greatly reduced by the addition of a dumbbell-
shaped flywheel attached to the motor shaft. When comparing the encoder signal
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read by an HP model 34401A multi-meter with the clock signal read by an HP model
5315B universal counter, the encoder signal was found to vary by not more than
2× 10−7 Hz from the reference signal. Both signals are 1000 times the disk frequency.
Hence, the disk frequency remains within 2× 10−4 Hz of the desired frequency which,
for the experiments reported here, is approximately 1 Hz. This very small frequency
fluctuation is responsible for a minimum fluctuation of 0.4 in Re.

The primary diagnostic technique used in the experiments was imaging of Fluores-
cein dye (5.4 p.p.m. by weight of Fluorescein powder in 3 : 1 by volume glycerin/water
mixture) injected from the bottom endwall. The imperfections cited above cause slight
asymmetries in the observed dye patterns. Due to the rotation of the flow through the
laser sheet, deviations from axisymmetry appear as apparent oscillations of the flow
at a frequency on the order of the disk frequency. In addition care is required to avoid
misalignment of the dye injection port with the cylinder axis as this can produce large
asymmetries in the injected dye pattern even when the symmetry of the flow field is
perfect (Neitzel 1988; Lopez & Perry 1992; Hourigan, Graham & Thompson 1995).
Generally, the images of the flow exhibited a high degree of axisymmetry and very
little spurious unsteadiness.

The fluid is a 3 : 1 glycerin/water mixture by volume. As noted by Escudier (1984),
the viscosity of this fluid is very sensitive to temperature. Viscosity is measured with
a Cannon–Fenske routine viscometer over a range of temperatures in the manner
prescribed by ASTM Standard Test Methods D 445 and D 446. These data are then
fitted to a straight line function of viscosity versus temperature. The accuracy of these
viscometers is ≈ 0.35%. The temperature in the test section and room are constantly
measured during the experiment using thermistors with a precision of ±0.004 ◦C. The
curve fit created with the viscometer gives the current viscosity of the working fluid.
Taking into account all the measurement errors, the Re is known to ±10, and H/R
is known to ±0.01. Note that these uncertainties are the worst case for estimating the
absolute values of these parameters. Since the radius of the cylinder remains constant,
the relative point to point uncertainty in Reynolds number is due only to uncertainties
in disk frequency and temperature from which viscosity is interpolated. The relative
uncertainty in Re is no more than ±0.7. There is no relative uncertainty for H/R
since this is constant during the experiment.

At this point, some comparisons between the current experiment and the experiment
of Escudier (1984) are appropriate. First, the size of the step change in Re must be
considered since this represents the largest disturbance to the flow. The apparatus used
by Escudier was capable of a minimum step change in Re of ≈ 16 (∆Ω = 0.11 rad s−1,
R = 9.5 cm, ν = 0.60 cm2 s−1). The continuous background disturbance level cannot
be inferred from the specifications presented in his paper. The current experiment
is capable of steps in Re as small as 0.4, limited by the fluctuations in disk speed.
Second, the precision in the Re measurement defines how well steps in Re are resolved
and how well hysteresis events may be captured. Whereas our precision value is 0.7,
Escudier has a precision value of at least 13.5 due to temperature-dependent viscosity
fluctuations alone.

To prevent temperature gradients in the fluid, the test section is isolated from
the room using an air bath. The air bath is a Plexiglas cube with an aluminium
bottom. Inside this box, polystyrene insulation material covers five of the six surfaces.
The remaining surface is uninsulated for flow observation. With this arrangement,
temperature within the cylinder varies very slowly with changing room temperature.

The flow structures are visualized by shining a laser sheet vertically through the
centre of the cylinder. When illuminated in this manner, fluid containing Fluorescein
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dye released into the vortex core fluoresces showing the meridional behaviour of
the flow. Records of the experiments are captured on Hi8 video tape, from which
qualitative (images) and quantitative (signal and power spectral density) data are
extracted.

In order to reduce the influence of dye injection into the flow, the dye is released
at a very low rate (0.02 to 0.11 ml min−1), and since the experimental runs are of
long duration (several hours), low levels of dye concentration are used so as to not
saturate the working fluid (a 3 : 1 glycerin/water mixture by volume). This, together
with the low-power laser used (53 mW He-Cd), results in faint images. To compensate
in a non-intrusive manner, the figures are produced by assembling several frames into
one frame, resulting in an enhanced total image. While invasive enhancements (e.g.
image processing) rely on the interpretation of a single frame from the video, a
composite image of several unaltered frames naturally brings out hard-to-see detail.
Each individual frame contains information, but since the data are from a low-light
video, it is inevitable that some of the detail will be missed. The interpreter, who
must judge which areas of the image to highlight or de-emphasize, is taken out of the
process. The frame overlaying method can be tailored such that each frame enhances
the whole image, building up detail where appropriate. Depending on the particular
characteristics of an image, the number of frames used is varied. For very low-light
images, up to thirty frames are used; whereas for brighter pictures, five frames may
be enough to produce high quality figures. In some cases, the dye contaminates the
experiment to a degree that precludes sharp detail.

For the steady flow cases, frames are chosen at random to form a complete
image. The periodic flow cases require the use of frames at the same phase of the
oscillation. For the quasi-periodic cases only single images could be used. With quasi-
periodic oscillations, each frame is unique and combinations of frames would produce
confusing ghost images.

Quantitative data were extracted from the video records of the experiment by
using a video capture board to digitize the pixel intensity from the sequential, evenly
timed frames. Only a small region of each frame, extending from the dye injection
port to past the region that included the bubble (instantaneous) stagnation point, 32
(horizontal) ×128 (vertical) pixels, was digitized. These were then passed through a
5 × 5 pixel Gaussian filter. The first frame in the sequence was used as a reference
frame and all subsequent frames were cross-correlated with it. Each resulting cross-
correlation matrix was fitted to a Gaussian and the location of its peak was found
(interpolating and correcting for biases introduced by fitting a Gaussian peak to an
image in motion). Since the dye tends to accumulate at the (instantaneous) stagnation
point, this location has the brightest intensity. Hence, the displacement of the Gaussian
peak from the origin is a very good estimate of the displacement of the stagnation
point from its location in the first frame. This displacement, as a function of time
(every frame is 1/30 s apart) provides the time series from which a power spectral
density (PSD) is obtained. The data, typically 210 frames long, are windowed by a
Hanning window before being fast Fourier transformed.

A certain amount of error is introduced into these data capturing techniques, espe-
cially due to the slight non-uniformity of the dye injection, resulting in discrepancies
in the calculated position of the dye line. As Re is increased, and particularly in the
quasi-periodic regimes, the technique becomes less accurate. Nevertheless, the method
proved adequately robust for the purposes of mode identification. The strongest fac-
tor in the contamination of the experimental data is the precession of the dye line
about the hyperbolic fixed point of the upstream bubble. When the video frames are
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digitized and processed, the different levels of intensity caused by the erratic motion
of the dye line in and out of the laser sheet causes small discrepancies in the apparent
motion of the hyperbolic fixed point. Fortunately, most of the undesired motion is
in the horizontal and not the vertical direction. The time scale is referenced to the
video rate of 30 frames s−1, giving a temporal resolution of 1/30 s. With a nominal
oscillation period of 3 s, the uncertainty in frequency is 0.0037 Hz, or approximately
1.1%. Therefore, all reported experimental times and frequencies, dimensional or
non-dimensional, have confidence intervals of ±1.1%.

Further details of the experimental techniques and set-up can be found in Stevens
et al. (1996).

3. Governing equations and computational technique
The governing equations and boundary conditions used are detailed in Lopez (1990)

and Lopez & Perry (1992). The numerical results presented here were obtained with
essentially the same code as that previously used (Lopez 1990, 1995; Lopez & Perry
1992), which has been extensively tested for grid independence and accuracy in those
earlier reports. For the sake of brevity, the details of the numerical scheme and the
various tests will not be repeated here. A comprehensive comparison between the
present finite-difference code and a spectral-projection code has been presented in
Lopez & Shen (1998), along with a discussion of the treatment of the small gap
between the stationary sidewall and the rotating endwall.

The equations governing the flow are the axisymmetric Navier–Stokes equations,
together with the continuity equation and appropriate boundary and initial conditions.
These are written using a cylindrical polar coordinate system (r, ϑ, z), with the origin
at the centre of the rotating endwall and the positive-z axial direction being towards
the stationary endwall. The velocity vector in cylindrical polars is

(u, v, w) =

(
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1

r
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1

r
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)
,
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The axisymmetric Navier–Stokes equations, in terms of ψ, Γ and η, are
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and

∇2 = ( )zz + ( )rr +
1

r
( )r.

The boundary and axis conditions corresponding to the flow in an enclosed cylinder
driven by the constant rotation of one of its endwalls are: ψ = 0 on all boundaries
and the axis; Γ = 0 on all stationary boundaries and the axis; Γ = r2 on the
rotating endwall; η = 0 on the axis and η = −(1/r)ψnn on all boundaries, where
the subscript n denotes differentiation normal to the boundary. Here, second-order
one-sided differences are used for the normal derivatives at the boundary, whereas in
Lopez (1990) and Lopez & Perry (1992) only first-order one-sided differences were
used.

In Lopez (1990) and Lopez & Perry (1992), the computations were performed using
a uniform grid of size nr× nz = 61× 151 and a time step of δt = 0.05. In the present
study (as in Lopez 1995), a stretched grid of size nr × nz = 66 × 161 is employed,
given by

r = x− a sin (2πx) and z = (y − b sin (2πy))H/R,

where x and y vary uniformly from 0 to 1. The grid stretching parameters a and b
have been set to 0.1; this concentrates the grid in the boundary layers on the top,
bottom and sidewall, and give a ratio of about one to four between the smallest and
largest grid spacing. To account for the smaller grid spacing, δt = 0.02 was found
necessary, but δt = 0.01 was used for the extra accuracy in the second-order time
scheme. This small δt, together with the long time-history data samples, results in
highly resolved PSDs of the flow. Typical lengths of records consisted of 218 data
points, spaced at δt = 0.01. The periods obtained from the PSD have three significant
figures, and the low-frequency modulation was resolved due to the length of the
record being adequate.

The unsteady flows have been characterized by the time histories of two-point
values of the azimuthal vorticity, v1 = η(nr/3, 4nz/5) and v2 = η(2nr/3, 4nz/5). The
PSDs of the numerical solutions are of the time histories of v1. The frequencies in this
confined, incompressible flow are independent of spatial location; however the power
associated with each frequency varies spatially. The different unsteady flows are also
characterized by the phase plots of v1 versus v2.

4. Results
In the experiments, Re was slowly varied and held at several values. Figure 2 shows

a typical time history of Re over one run. Several runs have been performed to confirm
the robustness of the results and to detect different details in different ranges of Re
accessed by altering the timing of the dye release and altering its concentration. At
each level, Re was held constant for at least 4500 endwall rotations (i.e. approximately
2.8× 104 non-dimensional time units).

In both the experiments and the numerics, for H/R = 2.5 and Re between about
2700 and 4400, three distinct oscillatory solution branches have been observed. For
Re < 3500, there is a periodic branch, termed the τ1 branch, with period τ ≈ 36 and
for Re > 3500, there is another periodic branch, the τ2 branch with period τ ≈ 28.
Over a range of Re ∈ (3200, 3700), there is a quasi-periodic branch, τ3, with a basic
period of τ ≈ 57 and a much slower modulation period of the order of 1000. The
modulation period varies with Re (and probably H/R, as do the other periods, but
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Figure 2. Example of the Re history during an experimental run.

in this study we have kept H/R = 2.5). In the following, various characteristics of
these oscillatory flow branches are described.

As the experiment evolved with quasi-steady changes in Re, usually starting from
an Re lower than that where oscillations persist (Re < 2700), dramatic changes
occurred in the stretching and folding of the lobe structures associated with the
unsteady leading recirculation zone. As Re was increased, the stretching became
more pronounced. This was most evident in the upstream bubble region, with the
lobes being stretched farther downstream. Meridional cross-sections of the bubble,
illuminated by a laser sheet fluorescing dye in the fluid, clearly indicate the stretching
and folding of the dye sheet forming the elongated lobe structures typical of chaotic
advection in a time-periodic flow (e.g. Re = 2800 in figure 3a, which shows a subset
of the meridional plane r < 0.4R, 0 6 z < 0.5H).

Upon reaching Re = 3000 (figure 3b), several observations are made. First, it
appears that the dye line emanating from the stationary endwall is precessing about
the axis of the cylinder. However, even a small misalignment of the dye injection
port with the cylinder axis will cause such apparent asymmetries. The axisymmetric
numerical investigations of Neitzel (1988) show how a very small offset in flow tracer
origin (from centre to slightly off-centre) can transform a bubble region into spiral
streaklines. Hourigan et al. (1995) have shown both numerically and experimentally
how ‘deceptive and illusory flow structures can appear even in the case of steady
flow in the absence of vortex breakdown.’ In their experiment, it was noticed that
just before the first recirculation bubble appears, the dye line forms a steady spiral
streakline even though the dye is injected nominally in the centre of the cylinder.
However, once the critical Re for the formation of the breakdown had been passed,
a steady, axisymmetric bubble was formed. The axisymmetric numerical simulations
of Hourigan et al. with tracers introduced slightly off the centreline showed the same
spiral form before the bubble developed. Naturally, when the tracers are released
exactly on the centreline, no spiral streaklines are evident before the formation of
the bubble. In our experiment, evidence that the flow is still axisymmetric is provided
by the symmetric stretching and folding of the upstream bubble. With much further
increases in Re (> 4000), this is not the case and asymmetries appear along the entire
length of the breakdown structure.
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(a)  Re = 2800

(b)  Re =3000

(c)  Re =3200

Figure 3. Dye sheet released from the centre of the bottom stationary endwall for (a) Re = 2800,
(b) Re = 3000, and (c) Re = 3200. Images are equally spaced over a period of τ1 and are composed
of 30 frames each at the same phase. They depict a subset of the meridional plane r < 0.4R and
0 6 z < 0.5H , illuminated by a laser sheet.

The second observation at Re = 3000 is that the regions devoid of dye, presumably
delineated by either Kolmogorov–Arnol’d–Moser (KAM) tori or cantori (Rom-Kedar,
Leonard & Wiggins 1990; Lopez & Perry 1992), in the downstream bubble have been
considerably reduced in size. KAM tori are regarded as boundaries across which
fluid cannot pass. Cantori provide only partial barriers to the flow, allowing small
amounts of mixing to occur over long periods of time. The KAM tori/cantori of the
upstream bubble are no longer detectable by Re≈ 2750; periodic orbits have broken
up into higher-order periodic islands, and there is increased tangling of the stable
and unstable manifolds of the hyperbolic fixed points such that dyed fluid is able to
penetrate deeply, but not completely, into the innermost regions of the bubble. By
Re = 3200, the KAM tori/cantori have essentially disappeared, yet the breakdown
structure still oscillates symmetrically as shown in figure 3(c).

From another experimental run, the flow at Re ≈ 2700 fortuitously had the right
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Figure 4. Closeup view of the dye sheet released from the centre of the bottom stationary endwall
for Re ≈ 2700 showing a period-one elliptic region surrounded by period-two islands; frames cover
two complete τ1 periods.

amount of dye at the right location in the upstream bubble to show an orbit about the
elliptic fixed point to have broken up into two period-two islands. Snap-shots of this
flow are presented in figure 4. These are phases covering two complete periods of the
flow and clearly show the period-one elliptic region surrounded by the two period-two
islands. These features were also observed in this neighbourhood of parameter space
in the computations (see figure 6a of Lopez & Perry 1992).

Some asymmetries of the breakdown structure appear at Re ≈ 3400, just before
the mode switch from τ1 to τ2 takes place in the neighbourhood of Re ≈ 3500. The
non-axisymmetric oscillation is manifested through the slightly uneven stretching of
the upstream bubble. One side of the bubble reaches full extension just ahead of the
other side. It is not clear whether this asymmetry in the dye streak is real or apparent
in light of the discussion above; however, it would not be surprising to find that a
non-axisymmetric mode becomes dominant in the neighbourhood of parameter space
where there is a switching between different axisymmetric modes. Figure 5 shows the
oscillation of the hyperbolic fixed point at Re = 3500 along with the power spectral
density of the signal for a flow that is fundamentally different from the periodic flows
τ1 and τ2 observed either side of Re = 3500. The power spectrum contains a signal
with frequency 0.01732 (τ ≈ 57) accompanied by a signal with frequency 0.03505
(τ ≈ 28); this is merely a harmonic, but it should be noted that the periodic flow
τ2 has a period τ ≈ 28. Some higher harmonics are also detectable. At Re ≈ 3600,
a flow with features in common with this Re = 3500 flow is also observed. Another
signal, significant with respect to the τ ≈ 57 signal, is also apparent at these Re. We
estimate this low-frequency modulation to be of the order of 0.001 (τ ∼ 103), but it is
not seen clearly in the experimentally determined PSD as there are not enough cycles
to resolve this low frequency. The frequency is evident in the time history shown in
figure 5(a) as a long-period modulation of the signal. It also appears indirectly in the
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experiment’s PSD as side-bands on the fundamental. These quasi-periodic flows are
referred to as τ3 flows.

The numerical computations were able to continue the τ1 periodic branch up to
Re = 3485. With a slight increase in Re to 3500, a τ3 quasi-periodic flow ensued.
Figure 6(b) depicts the PSD at Re = 3500 obtained from the computations. Having
used 218 data points, the PSDs of the computations are much sharper than those
of the experiments (figure 5b). A comparison between the experimental and the
numerical PSDs shows the agreement between the main peaks and the resolution of
the low-frequency modulation (frequency ≈ 0.001) from the computations which is
clearly seen in the time history from the experiment (figure 5a). A representation of
this quasi-periodic flow is given by the phase portrait in figure 6(a), depicting the two-
torus over several cycles of the main frequency (the phase variables used are values of
the azimuthal vorticity at two points: v1 = η(nr/3, 4nz/5) and v2 = η(2nr/3, 4nz/5)).

The experimental flow exhibits the τ3 quasi-periodic oscillations up to Re between
3650 and 3675. At Re = 3675, the flow switches to the τ2 periodic flow. The computa-
tions were able to follow the τ3 branch up to Re = 3730 by using small continuation
steps in Re of size 5. Above Re = 3730, only τ2 oscillatory states were observed in
either the numerics or the experiment, up to Re ≈ 5000. It should be noted that at the
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Figure 7. Re = 3500 (numerical). (a) Limit cycle and (b) power spectral density of v1 for
the τ2 flow.

high-Re end of the τ3 branch, the numerics show that the basic and the modulation
frequencies become commensurate and that the frequency of the τ3 branch is virtually
indistinguishable from the frequency of the τ2 periodic branch, although their phase
diagrams, i.e. the azimuthal vorticity associated with each flow state, are very different
and provide a means to distinguish the two solution branches (see figure 9).

With a quasi-steady reduction in Re, while on the τ2 branch, the experiment was
able to remain on the τ2 branch down to Re = 3625, while the numerical simulations
were able to remain on it down to Re = 3500. It is not clear why the experiment
was not able to remain on the τ2 branch for 3500 < Re < 3625. At both Re = 3500
and at Re = 3600, the computations evolved to the τ2 branch following an impulsive
start from rest. Figure 7 shows the phase portrait and the PSD for the τ2, Re = 3500
computed solution, which should be compared with the corresponding Re = 3500
phase portrait on branch τ3, shown in figure 6.

Once on the τ3 branch, the experiment was able to remain on this branch down
to Re = 3200. Reducing Re to 3150 resulted in a transition to the τ1 branch. This
transition takes place in the numerical simulations when Re is brought below 3225.
Figure 8 delineates the range in Re where the various solutions were found to co-exist
in the experiments and the numerics, along with their associated periods.

The distinction between a period doubling of the τ2 flow and a distinct τ3 flow is
now addressed. The observation that the τ3 flow has a period twice that of the τ2

flow may suggest that they are related by a period-doubling bifurcation. However,
an examination of the phase portraits from the computed solutions reveals that the
two flows are not connected by a supercritical period-doubling bifurcation. If they
were, then the τ2 and τ3 flow phase portraits would merge near the Re above which τ3

dies out and τ2 exists (Re ≈ 3730). Figure 9 demonstrates that this does not happen.
Figure 9(a) shows the phase portraits of the τ2 oscillations for Re = 3500, 3700, and
4000, and figure 9(b) gives the phase portrait of the τ3 oscillations for Re = 3730.
The phase portrait of the τ2, Re = 3700 flow is radically different from that of the τ3,
Re = 3730 flow. Figure 10 shows phase portraits of the τ1 flow for Re = 2705, 2800,
3200, and 3400 (figure 10a), and the τ3 flow at Re = 3225, and figure 11(a) shows
the phase portrait of the τ3 flow at Re = 3400; the τ1 and the τ3 phase portraits
do not resemble one another. The computational approach (the solution of the
initial value problem) and the experimental approach are not able to unambiguously
distinguish between disconnected branches and subcritically connected branches. So,



Oscillatory flow states in an enclosed cylinder with a rotating endwall 113

60

55

50

45

40

35

30

25
2500 3000 3500 4000

Re

τ

τ1

τ2

τ3

Figure 8. Variations of the fundamental periods with Re for each of the three oscillatory branches,
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0

–0.1

(a)

v1

0

–0.1

(b)

–0.2

–0.3

–0.4

–0.5
–0.4 –0.2 0 0.2 0.4 0.6 0.8

v2

–0.4

–0.3

–0.5

–0.2

–0.4 –0.2 0 0.2 0.4 0.6 0.8

v1

4000 3700 3500 v2

Figure 9. (a) τ2 limit cycles for Re = 3500, 3700, and 4000,
and (b) τ3 limit cycle for Re = 3730.

all we can conclude is that none of the three periodic branches found are connected
via supercritical bifurcations. Note that any connection between these branches would
be of co-dimension 2 or higher (Hopfs from limit cycles, etc.), the analysis of which
is non-trivial (Arnold 1988; Wittenberg & Holmes 1997).

The feature that most distinguishes the τ3 from either the τ1 or τ2 periodic flows is
its quasi-periodicity, the second frequency being a very low-frequency modulation of
the base frequency. The computations show that the modulation dies out as the end
of this branch is approached by increasing Re. Figure 9(b) shows the phase portrait
for the τ3, Re = 3730 flow. Although it contains all the frequencies of the τ2 flow, its
phase portrait is not close to any of the τ2 phase portraits. The modulation frequency
is evident for Re ∈ (3225, 3700) (figure 10b). The phase portraits for τ3 at Re = 3400
and 3650 are shown in figure 11. These, together with those for Re = 3225 and
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Figure 11. τ3 two-tori for (a) Re = 3400 and (b) Re = 3650.

Re = 3730, give an indicative picture of how the phase portraits depend on Re along
the τ3 branch.

For Re between 3200 and 3700, we have observed both in the experiments and
the numerics three distinct time-dependent flow states, two of them periodic and
the third quasi-periodic. Figure 12 is a sequence of images at Re = 3600 showing
a sequence over time τ3 (remember that the τ3 mode is quasi-periodic). This figure
shows how evenly the unstable manifolds of the bubble are stretched and folded
along the downstream part of the breakdown structure. Also shown in figure 12 is
the jagged appearance of the recirculation bubbles which is characteristic of flows
with a fundamental period of either τ2 or τ3. The overall structure of the flow is very
similar to that shown in figure 6(b) of Lopez & Perry (1992), corresponding to the τ2,
Re = 3600 axisymmetric flow.

For the Re flows discussed so far, any three-dimensional effects are small, allowing
extraction of useful quantitative data. At larger Re, however, the three-dimensional
perturbations prevent relevant analysis of the flow. The non-axisymmetric stretching
of the dye sheet around the upstream bubble leads to a more pronounced precession
of the dye sheet about the cylinder axis. This effect is not prominent for Re < 4000.
The precession causes the dye to appear to be concentrated alternately between the
axis of the cylinder and the lobes downstream of the breakdown structure. Actually,
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Figure 12. Dye sheet released from the centre of the bottom stationary endwall for Re = 3600.
Images are equally spaced over a time τ3 of the τ3 quasi-periodic flow, using one frame per image.
The images depict a subset of the meridional plane r < 0.4R and 0 6 z < 0.5H , illuminated by a
laser sheet.

the structure precesses about the centre of the cylinder and therefore wobbles in and
out of the laser sheet. When the axis of the structure coincides with the laser sheet,
the tree-like structure of the lower-Re flow is visible. However, when the core of the
breakdown structure is out of the laser sheet, the fluoresced dye is only located at
the edges of the lobes (or even further out from the breakdown core) giving the
impression of dye concentrated on the axis of the cylinder. Figure 13 shows different
stages of the precession of the structure about the cylinder axis over about 1400
non-dimensional time units for Re ≈ 4400. By Re ≈ 4700, the flow has become very
three-dimensional and no useful data can be inferred from the images except that
the non-dimensional period of the meridional oscillations remains at ≈ 28.6 up to
Re ≈ 5200 (no attempt to estimate the precession period has been made). At these
high Re, extraction of relevant data by the techniques used here is very difficult.

5. Conclusion and discussion
This investigation is concerned with the nature of the oscillations of the unsteady

flows in an enclosed cylinder with the flow driven by a rotating endwall. Three
oscillatory states were found to exist, both in the computations and the experiments,
with hysteretic jumps between them. Periodic flow with τ1 ≈ 36 exists for 2700 < Re <
3400. For 3400 < Re < 3500, the period of oscillation switches to τ2 ≈ 28. Oscillations
with τ2 exist beyond Re ≈ 5000, where the flow in the experiment shows departures
from azimuthal symmetry. Within the range 3200 < Re < 3700, a quasi-periodic state
with a primary period τ3 ≈ 57 was also found to exist in both the experiments and
the computations, and jumps of hysteresis between the τ1 and τ3 and the τ2 and τ3

states were observed.
Sorensen & Christensen (1995) have also numerically identified multiple co-existing

time-dependent branches with hysteretic jumps between them; however, the present
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Figure 13. Dye sheet released from the centre of the bottom stationary endwall for Re ≈ 4400
from time Ωt = 0 to 1388. Images are equally spaced and constructed with 1 frame per image.

study is the first to demonstrate their existence and robustness both numerically and
experimentally. We have both qualitative and quantitative agreement between the
experimental and numerical results for both the periodic and the quasi-periodic flows.
The combined numerical and experimental investigation has lead to the unambiguous
identification of a new distinct quasi-periodic solution branch that exists over a range
in Re bracketing the switch from one periodic branch to the other. The connections
between these three time-dependent branches are still not clear and this warrants
further investigation. A Floquet analysis of the periodic flows may shed some further
insight, as well as giving a clearer picture of how the azimuthal symmetry is broken
for Re beyond 3500.

The quasi-periodic (τ3) flows display some characteristics of homoclinic phenomena,
i.e. the period of the modulation O(103) is far in excess of the typical timescale of the
problem. We were not able to determine the modulation frequency very accurately
from the experiment and numerically we observed that it varied considerably over
the range of Re for which the τ3 flows exist, but were unable to determine this
variation with much precision. This is still an aspect of the flow that requires further
investigation. Similar behaviour has been observed experimentally by Mullin & Price
(1989) in Taylor–Couette flow and by Kobine & Mullin (1994) in a variant of Taylor–
Couette flow where the outer cylinder is square rather than circular. Kobine &
Mullin interpret the observed dynamical behaviour as suggestive of a Šil’nikov-type
mechanism (Šil’nikov 1965). Another possible interpretation of the quasi-periodic
τ3 flow stems from the low-frequency periodic bifurcations studied by Davis &
Rosenblat (1977), the degeneracy being due to the modulation frequency being
much smaller than the base frequency. Braunsfurth & Mullin (1996) have observed
similar behaviour in their experiments on convection in liquid gallium. These high-



Oscillatory flow states in an enclosed cylinder with a rotating endwall 117

codimension degenerate Hopf bifurcations have so far only been studied theoretically
for a few specific examples in systems of very low dimensions. It would be of great
interest to be able to unambiguously determine if these types of low-dimensional
dynamics occur in higher-dimensional systems, such as the Navier–Stokes equations.
The results presented here provide a preliminary step in that direction.
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